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A MOMENTUM ANALYSIS OF HELICOPTERS AND AUTOGYROS IN INCLINED 

DESCENT, WITH  COMMENTS ON  OPERATIONAL  RESTRICTIONS 

Harry H. Heyson 
Langley Research Center 

SUMMARY 

A  momentum  theory is developed  for  rotors  in  descending flight.  Comparison  with 
available experimental  data  indicates  that  the  theory,  when  properly  interpreted,  yields  the 
optimum  performance  of  the  rotor.  Power  settling  can  be  explained  on  the basis of the 
theory.  The reasons  and the  need  for  operational  restrictions  on  descending  flight  are 
discussed. The  maximum  autorotative  performance  of  a  rotor is determined.  The  theory 
shows  good  agreement  with  flight  measurements in autorotation. An appendix  develops 
similar equations  for a wing,  shows that  the ideal performance of  an autorotating  rotor is 
identical  to  that  of  a wing  of equal  aspect  ratio,  and  obtains  a  limiting  maximum wing 
lift  coefficient  which is confirmed  by  existing  experimental  data. 

INTRODUCTION 

Some  specific problems  which have no  counterpart in level flight  are encountered  by 
rotorcraft in descending  flight.  One  aspect  of  descent is autorotation, where the  unusual 
aerodynamic  characteristics of the  rotor  are  a  contributing  factor  to  a relatively  high 
accident  rate.  For  example,  reference 1 indicates  that  over  a  recent  3-year  period  more 
than 40 percent  of all United  States  Army  noncombat  helicopter  accidents involved auto- 
rotation.  The  problems  of  descending  flight  are  not  limited  to full autorotation. Addi- 
tional  problems  appear  when  descent is attempted  under  partial-power  conditions.  One of 
these  phenomena is power  settling,  where  the  helicopter  continues to  descend  at  an 
increasing rate  despite  the  application of additional  power.  An associated problem is an 
initially reversed response to  an increase in power  or collective pitch,  where  an  increased, 
rather  than  a  decreased,  rate  of  descent  may  be  obtained  under  certain  conditions. 

Because of the high accident  rate  incurred  in  descent,  the  present  study was con- 
ducted  in  order  to  provide  some basic understanding  of  the  aerodynamic  phenomena  which 
determine  the  descent  capabilities of rotorcraft.  The  particular  emphasis in this  paper is 
the  development  and  application of generalized momentum  theory to inclined  descent. The 
results  illustrate  the  flow  and  power  characteristics  of  the  descending  rotor. 



The  problem  areas  of  descending flight are  generally  encountered  within  or  near  a 
rotor flow  regime termed  the  “vortex-ring  state.” This flow  condition was described  first  by 
De Bothezat  (ref. 2) . .  1918;  however,  the  current  concept of the  vortex-ring  state is based 
largely on  the  work d Lock,  Bateman,  and  Townend  (ref. 3) in  1925.  The  flow  in  the 
vortex-ring state is circulatory  and  unsteady  on  a large scale.  There is no semblance of a 
smooth  slipstream  such as that  postulated  by  momentum  theory;  thus,  the  theory is gener- 
ally considered to be invalid. On the  other  hand,  the  existence of the  rotor  thrust  in  this 
condition argues that  there  must  be  a  transfer of momentum  to  the  surrounding air,  even if 
this  transfer  occurs  under less than  ideal  conditions.  Therefore,  there  remains  the  possibility 
that  momentum  theory,  when  properly  interpreted,  may still be  useful  in  defining  the mini- 
mum  power  requirements of ideal  rotors  in  descent  despite  the  inconsistencies  in  the  theo- 
retical  formulation.  Such  a usage  of the  momentum  theory is validated  in  the  present 
study  by  comparing  the  theoretical  results  with  experimental  data (refs. 4 and 5)  for  rotors 
operating over  a  range of  descent  conditions  including  the  vortex-ring  state. 

The generalized momentum  theory of reference 6 is  extended  herein to steady  de- 
scending  flight  along  an  arbitrary glide slope. A single set  of  equations is developed  which 
may  be used throughout  the  entire  flight range including  vertical  descent.  The  analysis of 
reference 6 is also extended  to  the  calculation of the  shaft  power  required  in  descent. 

The  calculated  shaft  power is the  key to an  understanding of several rotary-wing 
descent  problems.  The  results  indicate  conditions  which  cause  and aggravate power  settling 
in  inclined  flight.  Furthermore,  the  results  illustrate  reasons  for  the  initially reversed 
responses to power  applications  that  occur  in  certain  regions of  flight.  The  reasons  for 
severe operational  restrictions  on  the  descending  flight of a rotor  are  apparent in calculations 
based  on the  theory.  These  restrictions  are discussed in  the  text.  Conditions which should 
avoid problems  in  descending  flight  are also noted.  The  shaft-power  requirements in vertical 
flight  have severe implications  on  the design of  multiengine  helicopters  and  these  implications 
are also discussed. 

Furthermore,  the  theory is used to define  those  conditions  which allow an ideal  rotor 
to fly  in  autorotational  flight  and to  determine  the  minimum  flight  speeds  and  maximum 
lift  and  vertical-force  coefficients of the  autorotating  rotor. An appendix  elaborates  this 
latter analysis and  extends  it  to  finite wings; thus  a  direct  comparison of the  performance 
of wings and  rotors  in  autorotation is allowed. 

The  present  analysis is presented  in several major divisions, The  first of  these 
divisions presents  a  derivation of the generalized momentum  equations.  Next,  the special 
case of  vertical flight is treated  independently  including  a  comparison of the  theory  with 
experimental  data.  The  third division discusses the  application of the  theory  to  the general 
case of  inclined  descent  with  particular  emphasis on  those  conditions  conducive to power 
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szttling. The final division is concerned with full autorotation including the  conditions 
which  permit  autorotation  and  the  performance  obtainable 

SYMBOLS 

b2 aspect ratio, - 
S 

momentum area 

wing span 

in autorotation. 

r Z  
qs equivalent vertical-drag coefficient  of  a  rotor in vertical dscent ,  - 

lift  coefficient, - 
L 

q s  

vertical-force coefficient, - - A  

q s  

jet  momentum  coefficient, ~ 

Thrust 
q s  

drag 

4 
rate  of gain of potential energy, -FzVG sin 7 

induced-force  vector  produced by  rotor  (perpendicular to tip-path  plane) 

horizontal  component of force  produced b y  rotor, positive rc.!rward 

vertical component of force  produced by  rotor, positive upward 

component  of F normal  to glide slope,  positive  above glide slope 

additional  power required to climb 

power  required to  hover  with FX = 0 

shaft  power 

dynamic pressure 

B 



rotor  radius R 

S 

uO 

- 
V 

VG 

VR 

wO 

Wh 

a 

wing area (or swept  area  of  a  rotor, T R ~ )  

mean, or momentum  theory, value of  horizontal  component  of  induced 
velocity,  positive  rearward 

resultant  velocity  vector  at  rotor  or wing 

velocity  along glide slope,  generally  positive 

absolute  value  of 7 

mean,  or  momentum  theory, value  of  vertical component of induced  velocity, 
positive  upward 

a  reference  velocity,  value  of wo when  hovering  with  vertical  force = FZ 
and FX = 0, negative for positive lift 

rotor angle of attack, angle  measured  from  glide  slope  to  leading  edge of 
rotor  tip-path  plane, positive with leading  edge up 

Y glide-slope  angle,  angle  between horizontal  and  flightpath, positive  for 
descending  flight 

e rotor  inclination, angle  measured  from horizontal  to leading  edge  of tip-path 
plane,  positive with leading  edge up 

P mass density  of air 

X wake  skew angle, angle  measured - positive  rearward  from  vertical to  center of 
wake  as  defined  by  V 

xG 
wake  skew angle measured  from  normal to glide  slope, x - y 
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Subscripts: 

max  maximum  value 

min  minimum value 

DERIVATION OF MOMENTUM EQUATIONS 

Assumptions 

It is assumed that  the  flow  influenced  by  the  rotor is equal to  the  quantity of flow 
passing through  an  area  equal to the  swept  area  of  the  rotor  with  a  velocity  equal  to  the 
vectorial sum  of  the free-stream and  induced velocities.  This  flow is assumed to  be affected 
uniformly  and  the  remainder of the  flow is  assumed to  be  unperturbed  by  the  rotor.  These 
assumptions  can  be  recognized  as  the basis of the  treatments  of  Glauert  (ref. 7) and Wald 
(ref. 8). It can  be  observed further  that, in level flight,  the analysis of reference 9 has 
shown  that  these  assumptions lead to  results  identical to  those  obtained  by  simple  vortex 
theory. 

Induced  Velocities 

The  rotor is presumed to  be  descending  at  a  uniform  speed VG along  a  path de- 
tined by a glide-slope angle y. The  force  and  velocity diagrams at  the  rotor  for  this 
condition  are  shown in figure  1. The  vertical  and  horizontal  forces  of  the  rotor are equal 
to  the  time  rate of change of momentum in the  vertical  and  horizontal  directions.  Note 
that  the mass-flow rate is p x R 2 V ~  and  that  the  total  velocity  imparted  to  this flow rate 
is twice  the  induced  velocity;  thus, 

The  ratio  of  horizontal  force to  vertical  force  in  terms of the  induced velocities  is I 

. obtained  by dividing equation  (2)  by  equation (1) to  yield 
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The  resultant  velocity  at  the  rotor is obtained  from  the  vector diagram  of  figure  1 as 

Equation (4) may  be  nondimensionalized  by dividing both sides by -wo, and  then using 
equation (3), to  yield 

VR 
wO 
" 
" { ( 2  cos y + F "x), + +s 

Z wO sin y l2 
At this  point,  it is  desirable to define  a  convenient  reference velocity Wh which  can 

be  chosen as the vertical component of  induced  velocity in hovering  flight; that is, Wh is 
the value of wo when VG and FX are both zero.  Under  these  specified  conditions, 
Wh = wo  and,  from  equation (S), VR = -Wh. Now, substitute  these values into  equation ( 1 )  
and  solve for Wh to obtain 

Observe that  the negative sign of the  square  root in equation (6) is chosen  because, 
in the  present  notation,  a positive  force  is produced  by  a negative  induced  velocity. Next, 
solve equation (1) for wo and  divide the  resulting  equation  by  equation (6) squared to 
yield 

2p7rR2 

Multiplication of both sides  of equation (7) by wo  leads to  the general  result that 
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For  the  present  problem of the descending flight of a  rotor,  substitute  equation (5) 
into  equation (8) and  square  both sides of the  resulting  equation to eliminate  the radical 
in  order to obtain  the  momentum  quartic as 

It is  known  that at  the low and  moderate  speeds of primary  concern  herein,  the  in- 
duced  force of a  rotor is  essentially normal to  the  tip-path  plane;  that is, 

Substitute  equation (10) into  equation (9) to  obtain 

(LOT = 1 (L + 2 sin y r  + (" cos y + tan 6 
wO 7 

The  simplest way to solve equation (1 1 )  when 6' and y are given is to choose  values 
of  VG/WO, solve for WO/Wh, and  then  note  the  identity 

Unfortunately,  this  technique may  require  considerable  iteration  in  order to find  the 
induced  velocity  ratio at a  specified  value of VG/Wh. An alternate  procedure is to multi- 
ply both sides  of equation (1  1 )  by the  denominator of the right-hand  side and  then  to 
simplify the  result  in  order to  obtain 

+ ("G)' " ( w O r  - 1 = o  (13) 
Wh  Wh 
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Equation (13) is solved  easily on a  computer  and,  in  general,  either  one  or  three posi- 
tive real roots  can  be  obtained  at  a given VG/wh.  The  multiple  roots  occur  at  larger 
velocities (lvG/wh(  greater  than  about 2 and  more  frequently  for  positive  tip-path  plane 
inclination.  In  contrast,  solution  of  equation  (1 1) at a  given VG/w0  yields  only  one 
positive  real root.  The  difference is in the  reference  velocities  of  the  two  velocity  ratios 
which  are  related  in  a  highly  nonlinear  manner  through  equation  (12). 

) 

The Wake Skew Angle 

A  parameter  of  interest  in  the  subsequent analysis is the  wake skew  angle x,  the 
angle between  the  vertical  and  the  center  line of the  wake.  An  expression  for  the  tangent 
of this angle may  be  written  by  inspection of the  flow  vectors in figure  1  (and by using 
eqs. (3) and (10)) as 

tan x = 

VG 
wO 
- cos y + tan 8 

1 + - sin 7 VG 
wO 

Multiply both sides of equation  (14) by - 1 + __ sln y to  obtain ( " - a ; )  

Now substitute  equation (15) into  equation (1 1)  to yield 

Finally, solve equation (16) for  cos x to  obtain 
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Shaft Power 

The  shaft  power is merely  the scalar (or  dot)  product of the  force  and  velocity 
vectors  or, using the  present sign convention, 

P, = -F * V 
" 

Substitute  the  force  and  velocity  vectors  from figure 1 into  equation  (18)  to  obtain 

The  power  in  hovering is obtained  by  setting uo and  VG to zero  in  equation  (19) and 
then  noting  that in hover  wo = Wh; thus, 

The  nondimensionalized  power is obtained  by dividing equation  (19)  by  equation  (20)  and 
then  substituting  equation (3) into  the result  in  order to  obtain,  after  some  simplification, 

or using, in addition,  equation  (10)  to give 

" 's - 'G WO/wh 'G . 
'h wh cos2 8 Wh 

__ tan 8 cos y + ~ + --- sin y (22) 

The  physical significance of  the  three  terms  on  the  right-hand side of equation  (21) is 
noteworthy.  The  central  term  represents  the  induced  power  required  to  produce  the 
vertical and horizontal  rotor  forces; WO/Wh by itself is the  power  required to  produce  the 
vertical force,  and [1 + (Fx/Fz)2] is an  expansion  factor signifying that  the  resultant 
force  at  the  rotor is the vectorial  sum  of  the  horizontal  and vertical forces.  Note  that 
VG/Wh  is intrinsically negative. Thus,  the  final  term  represents  a  reduction  in  power 
caused  by the  rate  at which potential  energy is lost as the  rotor  descends. 

The first  term on  the  right-hand side of equation  (21) is of particular  interest since 
its  effect  differs  according to  the sign of FX/Fz. If FX/Fz is negative, this  entire 
term is positive and  represents  the  power  required  to  maintain  a  horizontal  propulsive 
thrust so as to overcome,  for  example, fuselage parasite drag. On  the  other  hand, if 

9 



F x / F ~  is positive,  this  entire  term is negative and  the rotor must  be  extracting  power  from 
the air  in  order to reduce  the  shaft  power.  The  reduction  in  shaft  power is not free, be- 
cause some  external  application  of  power  (such as separate  propulsion engines) is required 
to overcome FX so as to maintain  balanced flight. 

The  preceding  discussion  indicates  that  equations  (21)  and  (22)  contain all the  terms 
normally  considered  in  rotor  performance analyses with  the  exception of the  blade-profile 
power.  The  various  power  demands  are  not as independent  as  might  be suggested by  the 
foregoing  term-by-term  examination, since WO/Wh is an  implicit  function of VG/Wh, 
Fx/Fz,  and y. (See eqs. (9) and  (12).)  Thus,  the  terms  of  equations  (21)  and  (22)  are 
interdependent  and,  particularly  at low  speeds,  a  change  in  one  term  affects  the  remaining 
terms.  The  interplay of the  three  terms allows the  shaft  power  to vary over a wide range. 
Indeed,  the  shaft  power  may  be  zero,  or negative, even  when the  rotor is in level flight. 
In subsequent  sections  of  the  present  paper,  this  aspect of the  problem is examined in 
greater  detail. 

VERTICAL  FLIGHT 

The  present  understanding of the  character of the  flow  near a descending  rotor is 
largely based on  consideration  (ref. 3, for  example) of the  simple case of vertical  flight. In 
order to  provide a basis for  some of the  later  sections,  in  this  portion of the  paper  some 
of  the  major  features of  earlier  studies  are reviewed, the  application of the generalized 
theory  to  this case is shown,  and  the  theoretical  results  are  compared  with available experi- 
mental  data  (refs. 4 and 5 ) .  

Flow  Patterns Near the  Rotor 

In vertical climb,  a well-defined slipstream  exists. This slipstream  contracts  continu- 
ously as the  flow passes from  far  above  the  rotor,  through  the  rotor, and then  far below 
the  rotor (fig. 2(a)).  The  limit of  this  regime is hovering  where  a  definitive  slipstream 
exists  only  below  the  rotor. Because of the  similarity of this  condition  to  the  normal 
mode of operation of a  propeller,  this regime is designated as the  “normal  working  state.” 
Although  the generalized theory developed in the  preceding  sections of this  paper applies 
equally as well to  the normal  working  state,  such  operation receives only  minor  attention 
herein. 

As the  rotor begins to descend,  the  smooth  continuous  slipstream  disappears.  The 
external  flow is from below to above  the  rotor;  yet,  within  the  rotor and perhaps  for 
some  distance  below  it,  the  net flow is downward (fig. 2(b)). Within the  constraint of 
steady-flow  concepts,  this  flow  might  be  considered as containing  one  or  more  major  vortex 
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rings of varying location  with  respect to the  rotor. Because of this  steady-flow  concept, 
this regime  is  generally termed  the “vortex-ring  state.” 

When the  descent  rate  continues to increase, the  maximum  induced velocities of the 
rotor  eventually  are  exceeded  by  the  descent  rate.  Under  such  conditions,  the  entire  flow, 
both  within  and  outside  the  rotor,  must  be  directed  upward (fig. 2(c)).  Once  more  a 
definite  slipstream  is  observed,  expanding  continuously  as it passes upward,  through,  and 
beyond  the  rotor.  This  type of flow  is  similar to that of  a  windmill  extracting  energy 
from  the  wind;  thus, it is classified as the “windmill-brake state.” 

Figure 3 presents  a series of smoke-flow  photographs  (from  ref.  10)  of  the  various 
working  states of a rotor in vertical  descent.  The  continuous  slipstreams  of  the  normal 
working state  and  of  the windmill-brake state  are  evident.  The flow of the  intermediate 
descent  rates  is  usually  that  termed  the  vortex-ring  state.  This  flow is obviously not  as 
simple  as  the flow postulated  from  steady-state  concepts.  Great  “chunks” of rolled-up 
vorticity, ra’ther than  vortex rings, are  shed  sporadically  from the  rotor. (Even the  appendix 
of  ref. 3 notes  that  the  name  “vortex-ring  state”  may be  a  misnomer.)  The  vortex  shedding 
is erratic and often  aperiodic. No semblance  of  a  steady  wake  exists. 

The  formulation  of  the  momentum  theory  implicitly assumes  a continuous,  steady 
slipstream  which  obviously  does not  exist in the  vortex-ring  state. On the  other  hand,  the 
fact  that  the  rotor  thrust  exists on a time-averaged basis implies  that  the  rotor  must 
transfer  momentum to  the flow on  a time-averaged basis. 

Momentum  theory  presents  a highly  idealized picture of rotor  performance.  Since 
momentum  theory  omits all viscous losses and all losses caused  by nonuniformity of 
momentum  transfer,  its real function is only  to  obtain  the  maximum possible  efficiency of 
the  system.  Thus,  the  major  concern in applying  momentum  theory  to  the  vortex-ring 
state is not  whether a well defined  slipstream  exists;  the real concern is whether  the  theory 
still  obtains  the  maximum possible  efficiency of the  rotor.  This  question  can be answered 
only  by  recourse to  experiment  and, if the  answer is affirmative,  the  theory is still  usable 
on  a  qualitative basis. 

The  Induced  Velocity 

Prior to  a  comparison of the  theoretical  results  with  the  experimental  data,  it is use- 
ful to apply  the previously  developed  general equations to  the special case of  vertical 
descent.  In  vertical  descent  the  glide-slope  angle y is 90” and  the  tip-path  plane inclina- 
tion 8 must  be 0” to  maintain  the vertical path.  Under  these  conditions,  equation (1  1) 
reduces to  
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(?) = 
1 

(1 + $7 
or 

Equation  (23b)  factors  immediately to yield the  following  pair of quadratic  equations: 

Equations  (24)  are easily shown  to be identical  (except  for  notation)  with  the  expressions 
derived in a more restrictive manner in reference 1 1  (pp.  128-129).  The  solutions  to 
equations  (24)  are 

and 

(25b) 

The physically  impossible  negative  square root  has  been  eliminated  from  equation  (25a). 
Observe that this equation  then yields  a single-valued, continuously increasing  induced-velocity 
ratio as the  descent  rate VG increases. In contrast,  equation  (25b) is double valued but 
has no physically  possible solutions unless VG > 2jwhl. 

12 



Figure 4 shows the  solutions  of  equations  (25)  and  compares  them  with  a wide range 
of experimental  data  from  references 4 and 5. It may  be  seen  that  the  experimentally 
determined  induced-velocity  ratios  of  reference 5 are  somewhat  greater  than  the  theoretical 
values  from equation  (25a)  until VG > 1.51wlll. The  experimental values then  decrease 
rapidly  as VG increases,  finally  meeting and  then  attaining values somewhat  greater  than 
those  calculated  for  the  lower  branch of equation  (25b). In fact,  for  the highly  twisted 
blades  of  reference 5, the  experimental  data  indicate  an essentially discontinuous  jump  from 
equation  (25a)  to  equation  (25b)  at  almost precisely VG/Wh = -2. 

Time  histories  of  the  rotor  thrust  and  torque were obtained  during  the  experiments  of 
reference 4. These  quantities were found  to  be  extremely  unsteady even during  runs  at 
constant  conditions.  The  shaded region  indicates  the  range  of  induced-velocity  ratios  ob- 
tained from  reference 4. This region tends  to  confirm  the average  values obtained  from 
reference 5; furthermore, as noted  in  reference 4, the  lower  bound of the  shaded  region 
tends  to  conform  to  the  simple  momentum  theory over a wide  range of descent rates. 

Except  for  a small range  of descent  rates over  which  the  data  transfer  between  the 
theoretical  curves,  figure 4 demonstrates  that  the  momentum  theory  provides  a  lower  bound 
for  the  induced-velocity  ratio. (It is shown in the  next  section  that  this  fact  represents  a 
maximum  bound  on  efficiency.)  Indeed, if a  straight-line  transfer  from  equation  (25a)  at 
VG/Wh = -1.5 to  equation  (25b)  at VG/Wh = -2 was assumed,  the  theory  would repre- 
sent  a  minimum  induced  velocity  for all descent rates. Therefore,  the  theory  should  be 
usable in a  qualitative  manner  despite  genuine  concern over its basic formulation. 

Shaft Power 

For vertical  flight (y = 90") at  zero  inclination (6 = O"), equation (22) reduces to 

's wO 'G 
'h Wh Wh 
"- - + -  

In equation  (26),  the  first  term  on  the  right-hand side  represents  the  induced  power  required 
to  produce  the  thrust.  The  final  term  represents  the  reduction  in  shaft  power  as  a  result 
of the loss of potential  energy caused by  the  descent  rate. If the  induced  power were 
constant  with  descent  rate,  the  shaft  power  would  be 
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However, in vertical  flight, the  induced  power is independent of descent  rate  as  has 
been  shown  in  equations  (25).  Substitute  those  equations  into  equation (26) to yield 

(corresponding to eqs. (25a)  and  (25b)) 

" 's "- 1 vG 1 dw 
'h Wh 

- +z 

Even though  VG/wh is negative, it is evident  that  equation  (28a)  always yields  a 
positive shaft  power. As shown earlier, it is equation  (25a),  and  thus  equation  (28a), which 
applies to  modest  rates of descent.  Autorotation  which  requires  zero, or negative, shaft 
power  cannot be obtained  until  the  descent  rate is great  enough to  entail  the  use of 
equations  (25b)  and  (28b).  Thus,  the  theoretical  minimum  descent  rate  in  full  autorotation 
is VG/Wh = -2. At  this  descent  rate,  equation  (28b)  indicates  a  power  ratio  of -1; that 
is, the  rotor  is  extracting  as  much  power  from  the  air  as  it  required  for  power  input  during 
hovering. 

Figure  5  presents  a  comparison  of  theoretical  (eq.  (28))  and  experimental  data  in 
terms of shaft  power. In this  presentation  the  experimental  data  of  figure 4 have  been 
converted to  power  ratio by means  of  equation  (26). If a  transfer similar to  that  proposed 
in the discussion of figure 4 is assumed,  figure 5 shows  that  the  theory  indicates  a lesser 
power  than is actually  required.  A  lower  bound on power is obviously  an  upper  bound on 
efficiency. 

Power to  Climb 

For a  conventional  airplane,  where  the  induced velocities  are  small compared  with  the 
large forward  speed,  the  power  to climb is merely  equal to  the  rate  of gain of potential 
energy.  A  different  result is obtained  for  a  rotor  at  low  speed  because  the flight  speed 
affects  the mass flow  through  the  rotor in a  nonlinear  manner.  This  effect  may  be 
demonstrated in the  following analysis. 

The  power  required  to  climb  from  hover is the  difference  between  the  shaft  power 
while climbing  and  the  shaft  power while  hovering;  thus, 

" 'c  's - 'h  's 
'h 'h  'h 

- - - " 1  
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In  climb, or when  descending at  moderate  rates, Ps/Ph is given by  equation  (28a);  thus, 

Observe that  in deriving equation  (28),  the glide slope was taken as 90"; hence  a  climb 
velocity  is  represented  by  a negative value of VG. Therefore,  the  nondimensional  rate  of 
gain of potential  energy  is 

Now divide equation (30) by  equation  (31)  to  obtain  the  ratio of the  climb  power to the 
rate of gain of potential  energy 

Equation  (32) is indeterminate  at VG/Wh = 0; however, it 
by  the use of L'Hospital's rule 

VG __ 

VG 

may  be  evaluated  in  the  limit 

1 1 
- 2  
- -  (33) 

Equations  (32)  and (33) show  that a rotor is exceptionally  efficient  in  vertical climb. 
For small rates of climb  the  power  required to climb is only one-half of the  rate of gain 
of  potential  energy. This result is obtained  because  the  climb  rate increases the mass  flow 
through  the  rotor  and  thereby  decreases  the  power  required  to  sustain  the  necessary vertical 
force. 

Conversely, because  of the  reduction in mass  flow in descent,  the  descending  rotor is 
exceedingly  inefficient.  The  required  shaft  power is reduced  by  only one-half of  the  rate 
of loss of  potential  energy. 



Certain  flight  measurements  (for  example, fig. 5-8 of  ref. 1 1 )  tend  to  support  the  fore- 
going  analysis. On  the  other  hand,  figure 5 demonstrates  that  the  actual  situation  can be 
even worse than  predicted.  The figure  clearly indicates  an  essentially  constant  shaft  power 
until  the  descent  rate  exceeds 1.5lWhl. 

Control  of  Descent  Rate 

Altitude  control  by  a  pilot is largely dependent  upon  his  control of power,  either 
directly  or  indirectly,  by  the use of collective pitch.  Thus,  the  experimental  data  of 
figure 5, which indicate  an essentially neutral  power  stability  (dPs/dV~),  present  a basic 
problem in controlling  moderate  rates  of vertical descent.  The  problem is compounded by 
the  fact  that  the pilot’s  instinctive  feel  for  the  relationship  between  power  and  rate of 
descent is formed largely on  the basis of  his  experience  in cruising  flight or  in  conventional 
aircraft  where  (see  eqs. (27) and (29)) the  power  to  climb ‘is  essentially  equal to the  rate  of 
gain of potential energy (that is, PC = E p  which is also shown  in fig. 5). It is evident 
that  the  pilot  does  not  attain  such  a  relationship  until  he is approaching full autorotation. 

Reversed Response to  Power  and  Collective  Pitch 

At  larger rates  of  descent  there is a  distinct  possibility  that  the  initial  reaction to  an 
increase  in  power  or  collective  pitch is  in the wrong direction.  For  example,  consider  a 
helicopter  established  in  vertical  descent  with VG > 11 .5whI.  Collective pitch is applied 
to  check the  descent  rate.  The  thrust  responds in fractions  of  a  second, increasing the 
magnitude of Wh and  Ph;  however,  the  descent  rate  cannot  respond as  rapidly  since it 
requires  a  deceleration  of the  entire mass  of the  helicopter.  The  net  effect is  a reduction 
in the  ratio IVG/Wh(. As indicated  in  figure  5,  this  reduced  ratio  requires  a  greater  ratio 
of Ps/Ph in  addition  to  the  increase  in Ph itself.  The  required  shaft  power P, may 
increase so rapidly  that  the engine  response  rate is overpowered.  Thus,  the  rotor merely 
slows down,  reducing  the  thrust,  and  the  helicopter  continues  to  settle  for  a while,  perhaps 
even more  rapidly  than  before  the  application  of  control.  Since  the  thrust  now decreases, 
Wh and Ph also  decrease and reverse the  foregoing  sequence of events. The  eventual 
result  may  be  a  response  in  the  intended  direction;  however,  there is  likely to  be  a  major 
loss  of altitude  before  the  final  equilibrium  state  is  reached. 

Operationally,  the  importance of the  altitude loss is emphasized  by  the  fact  that  the 
foregoing  sequence of events is most  likely to  be  encountered  when  trying  to land  from  a 
rapid descent.  It  becomes  almost  impossible to  land  without  crashing. Vertical  descents 
should  be avoided  whenever  possible. If the  task  demands  a  vertical  descent,  such  as  the 
placement  of  an  external sling load  in  a  confined  area,  the  vertical  portion of the  descent 
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should  be  from  the  minimum  possible  height  above  the  ground  and  should  be  made  at  the 
minimum possible descent  rate. 

Multiengine  Helicopters 

As noted earlier, the  experimental  data  of figure 5 indicate  that  the  rate of descent 
does  not  depend  upon  the  shaft  power  until very large descent  rates  are  obtained.  Thus, 
if one  engine of a  multiengine  helicopter fails while  hovering, the  resulting  descent  rate in 
vertical  flight is essentially the  same  rate  that  would  be  obtained  with  a  total loss of power. 
The  remaining engines  provide no significant  reduction in the  vertical  descent  rate  and  thus 
no  additional margin  of safety.  Indeed,  the  multiengine  helicopter  may  be less safe  since, 
if equal  engine  reliability is assumed,  the  probability  that  one  engine  of  a  group will fail is 
greater  than  the  probability  that  a single engine will fail. Thus,  in  vertical  flight,  the 
“dead-man’s  region” (from which  safe autorotative recovery is impossible)  cannot  be  reduced 
by  multiengine design unless  sufficient  engines  are  provided so that  hovering  flight is possible 
with  one engine out. 

It  should  be  specifically  noted  that  the  preceding  discussion is limited to vertical 
flight. If  a  forward  speed  exists  at  failure,  or if it is possible to  attain  a large forward 
speed subsequent to failure,  the  remaining  engines may be of some  help.  Power  calcualtions 
for  forward  flight  conditions  are  presented in the  “Descent in Forward  Flight”  section  of 
this  paper. 

Ideal Autototation 

Ideal  autorotation is defined as that  descent  rate  for which the  shaft  power is zero. 
Thus,  set P,/Ph equal to  zero in equation (26) and solve for VG to  obtain 

VG = -wo (34) 

For  the case of vertical  descent  (where y = 90” and 8 = O”), substitute  equation (34) 
into  equation (5) to  obtain  the  resultant  velocity  through  the  rotor as 

Therefore,  in ideal autorotation,  there is no flow through  the  rotor. I t  might  appear 
from  equation  (1)  that  the  vertical  force also vanishes;  however, this is not  the  correct 
result  because  as VR approaches  zero, wo approaches  infinity.  (See eq. (7).) In 
order to  obtain  the vertical  force,  rewrite  equation (1) as 
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FZ = 2 p ~ R ’ ( & - ) w 0 ~  -VR 

Now substitute  equation  (8)  into  equation (36) to obtain 

Thus,  the  vertical  force  remains  constant  and  a  function  only of Wh even though 
there is no mass  flow through  the  rotor. However,  in the  theory,  ideal  autorotation can 
only  be achieved at an infinite  rate  of  descent.  This  fact is illustrated  by  figure 4 which 
shows  equation (34) and demonstrates  that  it is the  common  asymptote  to  equations  (25a) 
and (25b). 

Vertical-Drag Coefficient 

Rotor  performance in autorotation is occasionally  presented  in  terms  of  an  equivalent 
rotor vertical-drag coefficient  (refs.  11 and  12).  Such  a  presentation  compares  the 
performance  of  a  rotor  to  that  of  a  parachute. In this  presentation,  the  effective  drag is 
identical to  the  rotor vertical  force;  thus,  the  drag  coefficient  may be written as 

But,  from  equation (6), the  numerator  of  the final form of equation (38) is merely  wh2; 
thus, 

4 
(39) 

Equation  (39)  shows  that  the vertical-drag coefficient is merely an involuted  manner 
of stating  the  minimum  descent speed  of the  rotor in full  autorotation.  The  theoretical 
minimum value of (VG/Whl in autorotation is 2.0; thus,  equation (39) implies  a 
maximum vertical-drag coefficient  of 1 .O. 

As would be anticipated  from  the  previous discussion of figure 5, experimental 
vertical-drag coefficients  are  obtained which are greater  than  the  theoretical value. The 
flight measurements of reference  12  obtained vertical-drag coefficients ranging from  1.12 
to 1.32,  with  an average value of  1.25.  This average value would  imply  that VG = -1.79wh 
and,  at  this  descent  speed,  the  data  of figure 5 indicate  that Ps/F)., -1/2. 
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The  foregoing  assessment  of the  shaft  power  in flight should  be  approximately  correct. 
Even in hovering, the  blade-profile  power,  which  is  omitted  in  momentum  theory,  tends to 
be about 25 to 30 percent of the  induced  power.  Additional losses would be  expected 
because  of  the  inefficient  operating  conditions of some  blade  elements  in  autorotation. 
Still further  power is required to overcome  the losses associated with driving the  tail  rotor, 
gear boxes,  and accessories. The  source of power to overcome  these losses can only  be 
the  rotor  extracting  power  from  the air. 

DESCENT IN FORWARD FLIGHT 

Shaft Power  Required 

The  power  required  in  forward flight was  calculated  on  a  digital  computer by  the 
direct  solution of the  momentum  quartic  (eq. (13)) followed  by  the  evaluation of 
equation (22). The  results  are  presented  for  a series of rotor  inclinations  at  different 
glide slopes in figure 6 and  for  a series of glide slopes at  different  rotor  inclinations in 
figure 7. 

Observe that  the  presentations of figures 6 and 7 are  for  the  rotor  operating  with 
constant  vertical  force  and  not  constant  thrust  because  of  the  definitions of the  reference 
velocity Wh and the  reference  power Ph in terms of the  vertical  force  rather  than  the 
thrust. 

The  nonlinear  character  of  the  required  shaft  power  with  changes  in  tip-path-plane 
inclination  and glide slope is evident (figs. 6 and 7) particularly  for  speeds less than 21wh(. 
These  nonlinearities  result  from  the  complex  interplay  of 8 and y in determining 
the  resultant velocity at  the  rotor  and, in consequence,  the mass  flow through  the  rotor. 

The multiple-valued solutions  obtained  at higher velocities along  the glide slope are clear 
evidence of the  existence of flow  patterns  equivalent  to  the  vortex-ring  state of the  rotor 
in vertical flight. This  evidence is confirmed  by figure 8 which shows  a  time  sequence of 
smoke-flow photographs  (ref.  10) of a  model  rotor in inclined  descent.  The  virulent  nature 
of the flow  changes with  time  are  characteristic of the  vortex-ring  state. Again, observe 
that  there is no  semblance  of  the  steady-state  concept  of  a  vortex ring. The  steady-flow 
patterns  (ref.  10)  shown in figure 9 are  evidence of the  existence  in  forward  flight of 
equivalents to  the windmill-brake  state  (autorotation)  and  the  normal  working  state 
(helicopter  mode). 

Experimental  data to verify the  theory  in inclined flight  are  much  sparser  than  in 
vertical  descent.  Figures 10 and  11  compare  the  theoretical  results  with  the  data  bands of 
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reference 4. In  the  experiments of reference 4, considerably  fewer  conditions  were  tested 
in inclined  descent  than  in  vertical  descent.  Thus,  the  shape  of  these  data  bands  may  not 
be  as  definitive  as in vertical  flight;  however,  the  indicated  degree  of  agreement  should  be 
adequate to allow qualitative use of the  theory. 

Power  Settling 

One  important  characteristic  of  descending  flight  is  indicated  by  the  nature  of  the 
power  requirement  at  moderate  speeds 0 < IVG/wh I <  2 in figure 7. As the glide slope 
steepens  at  constant  speed,  the  power  initially  decreases;  however,  this  trend  does  not  con- 
tinue  indefinitely.  After  a  certain glide slope is reached,  further  steepening  of  the glide 
slope  requires  more,  rather  than less, power. 

The  foregoing  trends  are  shown  more clearly in figure 12  which  presents  shaft  power 
as  a function  of glide-slope  angle.  A  reasonably  fine increment in y (5”) was  used in 
preparing  figure  12;  however,  when  multiple  values  were  obtained  from  equation (13), the 
smallest (most negative) power was chosen.  In  vertical  flight,  this  procedure  would  yield  a 
discontinuous  jump  such as that  shown  for  the highly twisted  (-12”)  rectangular blades of 
figures 4 and 5. Thus, over  a  small range of VG/wh (say 1.5 < IvG/whl < 2), figure  12 
may  represent  a  “worst-case”  technique  for  a few conditions. In any  event,  the  choice  of 
this  technique  should  not seriously affect  the  discussion  to  follow. 

Figure  12  shows  that  the glide  slope for  minimum  power is a  function  of  the  rotor 
inclination;  it varies from  about 70” when  the  rotor is tilted  forward  20”  to  about  35” 
or 40” when  the  rotor is tilted  rearward  20”.  Such  a  trend  might  be  expected  from  a 
consideration  of  the  effect  of 8 on  the angle of  attack  measured  with  respect  to  the 
glide slope.  It is even more  evident in the  sharp increase in power  for VG less 
than  2.o(wh/  at a large y. This  peak in power  represents  an angle of  attack  of 90”; 
that is, aerodynamically  speaking  the  rotor is in “vertical  descent.”  Figure  5  has  already 
shown  that  the  experimental  trend in vertical descent  indicates  a  constant  shaft  power in 
vertical descent  for VG less than 1.51wd. Thus, in practice,  the  powers  near this 
“peak”  point are greater  than  indicated  by  theory. A distinct  minimum  may  exist even 
where not shown in the  theory  for very  low speeds,  and  the  slopes  of  the curves at large 
glide slopes may be considerably  greater  than  indicated  by  the  theory. 

The  required  inclination  depends  on  the  speed  and  the parasite-drag  coefficient  since 
balanced  flight  requires  a  propulsive force  equal to  the drag.  Vertical  equilibrium is auto- 
matically  satisfied in figure 12  since, as was noted  earlier,  the  entire analysis is based on a 
constant vertical  force. The  primary  concern  herein is with  steep  approaches;  the fuselage 
drag is small  and  equilibrium  requires  only  a  small  nose-down  inclination  of  the  tip-path 
plane. 

A pilot  flying  a  steep  approach  generally flies with  reference to  the  ground  either 
visually or  through  the use of  some  avionics system.  Although  he  can se‘nse sidewinds  as 
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a  drift,  his  perception of a  headwind  or tailwind is poor. Even a  light  tailwind  can  pro- 
duce  a  major  difference  between  the glide slope  with  respect  to  the  surrounding  air mass 
and  the  geometric glide  slope. If the flight is stabilized  near one of the  minimum  power 
points, figure 12  shows  many  combinations  of 7, 8 ,  and VG/Wh for  which  a  tailwind- 
induced  change of only 10” or 15”  in ”/ increases the  required  shaft  power  by 50 to  
100  percent  of  the  installed  power.  In  the presence  of such  a  major  increase  in  required 
power, the  helicopter  settles,  thus  increasing  the glide slope  and  still  further  increasing  the 
required  power. 

Operationally,  the  appearance  of  the  phenomenon is rapid and usually unexpected. 
Pilots sometimes  refer to   i t  as “stepping  into  the  sinkhole.”  The  particular  problem is that 
the  pilot  has  no  means  of  determining  his  aerodynamic  flightpath. He may successfully 
negotiate  a  combination  of  geometric glide slope  and  speed so many  times  that  he is con- 
fident of its  safety;  however,  the  next  approach  may  encounter  winds  that  produce disas- 
trous  consequences. 

A similar  sequence of events  can  be  encountered even without  a  tailwind. If any 
disturbance increases the  speed  along  the glide slope,  the  instinctive  reaction of a  pilot is 
to  correct  the airspeed by pulling back  on  the cyclic-pitch  stick to increase the  rotor 
inclination. If the original  stabilized glide slope was near  a  minimum  power  condition, 
comparison of the  various  parts of figure  12  shows  that  such  a  rearward  stick  movement 
may result in a  power  requirement  far  in excess  of that available in the  helicopter. 

The  operational significance of this  effect is that  pilots  should  be specifically cau- 
tioned against  any large or rapid  rearward  stick  motions  while in steep  descents.  Figure  12 
indicates  that  there is no  need  for similar caution  with regard to  forward  stick  motions. 

The  normal  reaction of a  pilot to  an excessive rate  of sink is to increase  collective 
pitch  and  power. ‘The first  effect of such  control is an increase in vertical  force,  thereby 
increasing Wh and Ph and  decreasing  IVG/wh/.  Figure  12  shows  that  this  sequence 
initially  requires  a  further  increase in shaft  power.  Thus,  the  intial  response  to  such  con- 
trol is likely to  be an  increased,  rather  than  a  decreased,  rate of sink.  The pilot’s term 
for  this  phenomenon is “power  settling”;  the  term is particularly  apt  and  far  more descrip- 
tive than  “vortex-ring  state.” 

Recovery  From Power Settling 

The  optimum  recovery  from  power  settling  cannot  be  obtained  from  considerations as 
simple  as  those  presented  herein.  On  the  other  hand,  one  obvious  feature  of  a  successful 
recovery,  the  effect  of  rotor  inclination, is  evident  in  figure .12. Figure 13  presents  a 
direct  comparison  of  shaft  power  for  rotor  inclinations  of  -10”  and 10”. For  the  steep 
approaches  in  which  power  settling is likely to  be  encountered,  such  a  change  from  10” to 
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-10' produces  a  major  decrease  in  shaft power. Furthermore,  the  decrease  in  power is 
available only  a  few  rotor  revolutions  after  an  abrupt  forward  movement of the  cyclic 
stick.  In  addition,  the  forward rotor  tilt increases the  horizontal  force FX and  the 
helicopter  accelerates to  a  greater  speed VG, thus  further  reducing  the  required  power. 
Conditions  adequately  safe  for  a  major increase in collective pitch  and  power  should  be  at- 
tained  after  a  short  time. 

Avoidance  of  Power  Settling 

Any  recovefy from  power  settling is likely to result  in  a  significant loss in altitude. 
Thus, the  safest  procedure is to fly so as to avoid power  settling  at all times.  Many 
pilot's  manuals are  not very  descriptive  of the  conditions to  be  avoided;  however,  certain 
obvious  conclusions  can  be  drawn-  from  figure  12. 

First,  power  settling  is  not  likely to occur if the  speed  along  the  flightpath  is  reason- 
ably high.  A  speed  of  2 to 2 1/2 times lwhl safely  avoids  power settling  for  any glide 
slope.  On  steep  approaches,  such  speeds  almost  inevitably lead to negative shaft powers, 
that is, complete  autorotation.  Indeed,  the  power  returned  through  the  rotor can be so 
great at these  speeds  that  there  may be difficulty in  preventing  dangerous  rotor overspeed 
conditions.  Furthermore, if the glide  slope  is steep,  such high  speeds  lead to excessive 
descent  rates.  (Observe  that at y = 45", the vertical  and horizontal  speeds of the heli- 
copter  are  equal.) 

Second,  power  settling is unlikely to occur if the glide slope is  shallow.  Limiting 
glide  slopes to  10" or 15" avoids  power  settling at almost  any  forward  speed. 

AUTOROTATION IN FORWARD  FLIGHT 

The preceding  figures have illustrated  many  conditions  for  which  the  shaft  power is 
less than or equal to zero.  Such  results  should  be  anticipated in view of the  known  auto- 
rotative  capability  of  rotorcraft.  The following  sections of this  paper  pursue  this aspect of 
the  momentum  theory in  an effort  to  delineate  the  conditions  for which autorotative flight 
is possible. 

Ideal Autorotation 

Ideal autorotation is the  condition of zero shaft  power;  thus, in equation  (19),  set 
Ps equal to zero,  and solve for Fx/Fz,   to  obtain 
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Inspection  of  figure 1  shows that  the right-hand side of equation (40) is merely  the  cotan- 
gent  of  the wake skew angle x. Furthermore,  from  equation (lo), F x / F ~  is  the  tangent 
of the  rotor  inclination 8 ;  thus  tan 8 = cot x, or 

e = goo - x (41) 

Equation  (41)  shows  that  for  ideal  autorotation 8 is the  complement of x. Under 
these  conditions figure 1  shows that  the  resultant  velocity  VR lies exactly  in  the  plane of 
the  rotor.  Therefore,  the  condition  for ideal autorotation  in  forward  flight is similar to that 
in  vertical  flight;  namely,  the  component of resultant  velocity  through  the  rotor  disk is 
zero.  On the  other  hand,  there is also  a  significant  difference  because, in forward  flight, 
VR  itself is not necessarily zero. 

Conditions  for  Ideal  Autorotation 

Now that  the  character of the flow  at  zero  shaft  power is defined,  the  conditions of 
speed VG, inclination 8, and glide slope y which  result  in  ideal  autorotation (Ps = 0) 
can  be determined.  Substitute  equation (41) into  equation  (17) to obtain 

Now solve 

Next solve 

equation  (42)  for WO/Wh to  yield 

(43 1 

equation  (22)  for WO/Wh to  obtain,  after  some  trigonometric  simplification, 

wO -'G 
Wh Wh 
" - - cos 8 sin (8 + 7 )  (44) 

Observe that 8 + -y = a, the  rotor angle of attack  with  respect to the  flightpath.  Finally, 
equate  equations (43) and (44), and solve for ( V G / W ~ ) ~   t o  obtain 

Equation (45)  relates 8 ,  7, and VG for  ideal  autorotation. 

(45 1 
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Minimum  Speed for  Autorotation 

In  order to  obtain  the  minimum  speed  for  which  ideal  autorotation is possible, differ- 
entiate  equation  (45)  with  respect  to y, set  the  differential  equal to zero,  and solve for 
7 to obtain 

y = 45" - 8 (46) 

Now substitute  equation  (46)  into  equation (45) to  yield 

2 (2)min = a 2 

The  minimum of equation  (47)  obviously  occurs  when 0 = 0", so that 

'Gymin -@ Wh 

(47) 

This minimum  speed  occurs  with y = 45"  (eq.  (46))  and x = 90"  (eq. (41)). It 
is interesting to observe that  the  minimum  speed  occurs  when  the  wake is horizontal. 
Furthermore,  since  the glide slope is 45", the  horizontal  and  vertical  components  of VG 
at  minimum  speed  are  identical  and  simply  equal to -Wh. 

Maximum  Vertical-Force  Coefficient 

It is of some  interest to consider  the  maximum possible vertical-force  coefficient in 
ideal  autorotation.  This  coefficient  may  be  rewritten as 

Substitute  equation  (6)  into  equation (49) and  simplify  the  result to yield 

4 cz = - 
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Equation  (50)  shows  that  the  maximum vertical-force coefficient is obtained  at  the  minimum 
value of VG; substitute  equation  (48)  into  equation  (50)  to  obtain 

It is obvious  that  there is nothing really remarkable  about  the  performance of the 
autorotating  rotor. Even under  optimum ideal conditions,  the low-speed performance is 
largely obtained  by  the relatively large swept  area of the  rotor  disk  and  the  absence of 
separation  except  locally  on  some  blade  elements. 

Maximum  Lift  Coefficient 

When steep glide slopes  are  permitted,  the  lift  coefficient  may  be  significantly  differ- 
ent  from  the  vertical-force  coefficient. To obtain  the lift coefficient,  consider  the  vector 
diagram of figure 14, from  which 

CL = Cz (cos y - tan 8 sin y) ( 5 2 )  

Substitute  equations (45) and (50) into  equation (52) and  simplify to yield 

Equation  (53)  depends  only  on  the  sum  of 8 and y. Since 8 + y = a, the  tip-path 
plane angle of attack,  such  a  result  should  be  anticipated. To obtain  the  maximum value 
of CL, differentiate  equation  (53)  with  respect to (e  + y), set  the  differential  equal  to 
zero,  and solve for (0  + y) to yield 

COS (e  + 7) = cos Q! = 

Substitution of equations  (54)  into  equation  (53)  yields 

CL,max = -"fi 9 = 1.5396 (55) 
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The  maximum  lift  coefficient  of  the  autorotating  rotor is even less impressive than  its 
vertical-force coefficient (eq. (51)). The  speed  for C L , ~ ~ ~  differs  from  that  for 

% , m a *  To determine  this  speed, first solve equations (54) for  cos 0 to yield 

cos e =G cos y + sin y (56) 

Now substitute  equations (54) and (56) into  equation (45) to  obtain 

The  minimum  speed at which the classic autogyros of the  1930's  could  operate is 
obtained by setting y equal to zero  in  equation  (57)  to  yield 

Operation  at such  low  speeds is not particularly  efficient,  as  may  be seen from  equation  (10) 
by noting  that  for y = 0, FX = D, FZ = L, and a = 8 ,  so that  from  equations (54), 
L/D = + at 'Gymin. 

When descending  flight is permitted,  the  descent  angle  for  minimum  speed is obtained 
by  differentiating  equation  (57)  with  respect to y, setting  the  differential  equal  to  zero, 
and solving for y to  obtain 

y = cos-' 8 35.264' (59) 

the  corresponding  rotor  inclination is 0 = 0" (from  eqs. (54)). The  minimum  speed 
(corresponding to C L , ~ ~ ~ )  is then  obtained by substituting  equation  (59)  into  equation 
(57)  to yield 

The  limiting  lift  coefficients  found  for  the  autorotating rotor  are  modest  compared  to 
those  obtained  from  many wings. This  subject is covered  more  completely  in  the  appendix 
where  equivalent  expressions  are  developed  for wings. 
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The  performance 

nondimensional  rate of 

Performance in Autorotation 

of the  autorotating  rotor is most  conveniently  shown  in  terms  of  the 

VG 
sink ( - ~h sin 7 )  and  nondimensional  forward  speed 

( - 2 cos 7).  For ideal  autorotation,  where  the  shaft  power  is  identically  zero,  the 

combinations of forward  speed  and  sink  rate  which  produce  autorotation  are  obtained 
simply  from  equation  (45).  These  combinations  are  shown  in  figure 15(a). 

In  a  practical  rotorcraft,  the  rotor  must  extract  sufficient  additional  power  from  the 
air to  operate  the tail rotor  and  to  account  for  gearbox  and accessory losses as well as to 
overcome  blade-profile losses and  inefficiencies  in  producing the  induced  forces.  Thus, in 
practice,  the  theoretical  shaft  power  must have a  substantial negative value. By assuming 
a  reasonable value of  Ps/Ph  of -0.5,  the  autorotative  performance has been  obtained  by 
interpolation  from  calculations based on  equations (13) and  (22).  These  results  are 
presented  in figure 15(b). 

In figure 15  the  theoretical values are  omitted  for  the  steepest glide slopes  where 
multiple values are  obtained  from  equation  (13). As noted  in  the  sections  on vertical 
descent,  the  minimum  autorotative  descent  rates  in  vertical  flight  are  found  experimentally 
to be  of the  order of -1.8 Wh. This approximation  should  be  adequate over most of the 
extreme glide-slope range (75" to 90"). 

The  theoretical curves of figure 15 satisfy  the  required  power  ratios  and  maintain 
constant  vertical  force. In addition,  it is necessary to satisfy  horizontal  equilibrium.  This 
equilibrium is obtained  through  a  suitable  variation of  tip-path-plane  inclination  which  must 
be  zero  when  the  speed is zero  and  must decrease in a  parabolic  manner as the  speed 
increases. If  such  a  variation  of 8 is assumed  and  traced out in figure 15, the  descent 
rate is found to have  a minimum  at  some  forward  speed  on  the  order of 

2 < ~ COS y < 3. Further increases of speed require an increased descent  rate. VG 

Iwh 1 
Comparison  With  Flight  Measurements 

Autorotative  conditions.-  The  theoretical curves of  figure  15(b)  (Ps/Ph = -0.5)  are 
compared to flight  measurements  in  figure  16.  The flight data were obtained  by  a research 
pilot;  however,  the  aircraft was not specifically instrumented  for  the  tests. In particular, 
no  direct  power  measurements  were  made.  The  autorotation curve was delineated (sub- 
jectively to  some  extent)  by listening  for  the  point  at  which  the  transmission gear teeth 
began to  chatter.  Further,  the  vertical  and  horizontal  speeds  were  obtained  from  the 

_____ 
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normal  aircraft  instruments  which  are  not precise throughout  much  of  the range  of interest. 
The rotor inclination  in  flight was not measured;  however,  as observed  earlier, the inclina- 
tion  must vary from 0” in  vertical  flight to some  modest negative  value in forward  flight 
in order  to  maintain  a  balance  of  forces  in  the  X-direction.  Thus, figure 16  shows  the 
theoretical  calculations  for several rotor  inclinations. 

Despite the  crude  nature  of  both  the  theory  and  the  experiment,  the  results  shown  in 
figure 16 are surprisingly good.  At  the  maximum  forward  speed  for which measurements 
were made,  it is  necessary to  assume  only  a  modest  6”  or 7” rotor  inclination to  achieve 
agreement. 

Additional  comments.-  In  practice,  full  autorotation  occurs in or near  the windmill- 
brake  state  and  serious  problems  no  longer  occur.  No  analogous  definition of the  onset  of 
severe  flight problems is to  be  found  in  the relatively smooth  theoretical curves at small 
descent  angles or small descent  rates. Nevertheless, some  problems  do  exist,  and  these 
problems  are  indicated  by  the flight data. 

Figure  16  shows  a  boundary  along  which  the  pilot  could  sense  vibration or unsteadi- 
ness. These  features were  barely perceptible  on  the  boundary;  however,  they  became 
greater in magnitude  with  proximity  to  the  shaded region within  which  the  aircraft  became 
uncontrollable  in  pitch  and roll. The  same  guidelines  presented in the  section  entitled 
“Avoidance  of  Power  Settling’’ y < 10” or  15”,  or VG > 2 to  2.5/-whl)  avoid  these 
problems. 

( 

The  uncontrollable region in near-vertical descent is  of interest because  of the very 
mild descent  rates  at  which  this region is encountered. Analyses based on  the  isolated 
rotor (refs. 4 and 13) indicate  that  this  problem  should  not  be  anticipated  except  at 
descent  rates  twice  those  of figure 16. However, the  data  of figure 16  are  confirmed by 
much earlier  flight experiments such  as those of reference  14.  The  smoke-flow  photographs 
of  figure 3 indicate clearly that major  flow  fluctuations  occur  at  the fuselage at lesser 
descent  rates  than  required  for similar fluctuations  at  the  rotor itself. It seems  reasonable to 
assume  that  the  onset  of  the  difficulty is  caused by  the  effect  of  this  violently  unstable 
flow  on  the fuselage rather  than  on  the  rotor. 

CONCLUDING REMARKS 

A momentum  theory has  been  developed for  the specific purpose  of  treating  rotors 
in descending  flight. Available experimental  results  indicate  that,  when  properly  interpreted, 
the  theory  yields  the ideal performance  of  the  rotor.  Calculations  and  data  indicate  that 
multiengine design will not significantly reduce  the  “deadman’s  region”  from  which safe 
vertical autorotative recovery is impossible  unless the design is such  that  the  helicopter 
can  still  hover after  the  failure  of  one engine. 
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Calculations  based on  the  theory  indicate  the cause  of power  settling  as well as  means 
of  avoiding it. In  addition,  the  calculations  demonstrate  the  need,  and  the  reasons,  for 
severe operational  restrictions  on  the  descent of rotary wing  aircraft.  These  restrictions 
include: 

1.  Vertical  descent  should  be  avoided  whenever  possible. 

2. If vertical descent is required, i t  should  be  attempted  only  from  the  minimum 
allowable  height  above the  ground  and  at  the  minimum possible descent  rate. 

3. Steep  descents  at  low  speeds  should  be  avoided. Even  small  winds  imperceptible 
to  the  pilot  may  result  in  power  settling. 

4. Pilots  should  be  particularly  cautioned  against large or  rapid  rearward  stick move- 
ment in steep  descents. 

5. Descending  flight should  be  limited to  glide-slope  angles of no  more  than 10" or 
15"  and  speed  along the  flightpath  should  be  kept high,  preferably in excess of 2 to 2 1/2 
times  the hovering  induced  velocity. 

Autorotation in forward  flight  has  been  examined  and  the  optimum  performance in 
autorotation has  been  determined.  Flight  measurements  of  autorotative  performance indi- 
cate good  agreement  with  the  rates of descent  obtained  from  the  theory. 

An appendix derives  equivalent  momentum  theory  equations  for  a wing. It is 
demonstrated  that  the ideal performance  of  an  autorotating  rotor is identical  to  that of a 
wing  of equal  aspect  ratio.  In  addition,  expressions  for  the  limiting  maximum lift of a 
finite wing are developed  and it is shown  that  any  other values of maximum  lift would 
require  that  power  must  be  either  supplied  to,  or removed from,  the wing itself. 

Langley Research Center 
National  Aeronautics  and  Space  Administration 
Hampton, Va. 23665 
June 30, 1975 
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APPENDIX 

COMPARISON OF THE MAXIMUM PERFORMANCE  OBTAINABLE  FROM 

AUTOROTATING  ROTORS  AND  FINITE WINGS 

Since the  maximum  lift  and vertical-force coefficients  indicated  for  autorotating  rotors 
in  the  main  sections of this  paper  are  of  the  same  magnitude  as  those  which  would  be  ex- 
pected  from  a  finite wing, it  is  interesting  to  compare  the  two  lifting  systems  on a common 
basis. In  this  appendix,  relations  equivalent to those of the  main  text  are  developed  for 
the  finite wing, thus  permitting  a  direct  comparison.  Two  differences  must  be  accounted 
for. 

The first difference is that  the effective  area  for  determining  the  affected mass  flow 
is not  the wing area;  instead,  following  Prandtl  (ref.  15),  the  effective,  or  momentum, 
area is taken as the  area of  a circle circumscribing the wing  tips,  thus 

The  area  Am  must  replace  the  rotor  area r R 2  in all of the  equations of the main 
text.  Note,  in  particular,  that wh  now  has no physical  meaning since a wing cannot 
hover;  however, it  is still  useful as a  convenient  reference  velocity.  Thus,  substituting 

Am for nR2 in  equation (6) 

The  second  difference is that  there is no simple  relationship  between 0 and 
FX/Fz to correspond  with  that  for  a  rotor  (eq. (10)). Thus,  the  derivation  must  be 
carried out  without  recourse  to  equation  (10). 

In considering  the  simple  unpowered wing, it will be  observed  that  the  “shaft  power” 
must always  be zero,  for,  indeed,  there is no equivalent of a  shaft  with which either  to 
provide power or  to  extract  power  directly  from  the wing. The losses of the wing must 
always be  overcome  by  the  application of power  elsewhere  in the  system.  Therefore, fol- 
lowing  in the  manner of equation (40) 

“ r X  - 
FZ 

cot x 
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The  resultant  velocity  VR  is  not  required to lie in the plane  of  the wing; however, 
equation (A3) requires that the resultant  force  vector  be  normal to the wake at  the wing 
and, specifically, not  normal to the  far wake,  Any other inclination  of the resultant  force 
vector  would  require  an  inadmissible  power input  or  output  through  the wing. 

Now  solve equation (17) to yield 

wO 1 'G 

Wh Wh 
" "- - sin y + 2 

Next,  set Ps/Ph to zero  in  equation  (21)  and solve for wO/wh to obtain 

wO -vG 
" - 
Wh 
- sin x cos (x - y) 
Wh 

Finally,  equate  equations (A4) and (A5), and solve for  (VG/wh)2, to yield 

- L (2) = sin x sin 2 (x - y) 

The glide slope for  the minimum  flight  speed  is  obtained by differentiating  equation 
(A6) with  respect to  y, setting  the  differential  equal  to  zero,  and solving for y to 
obtain 

Now substitute  equation (A7) into  equation (A6) to obtain  the  minimum speed as a 
function of the  wake skew angle 

2 (q)min vG = 2 

The  minimum of equation (A8) obviously  occurs when  the  wake,  as  before, is 
horizontal (x 90"), and  also, from  equation (A7), the  optimum glide slope  is  once  more 
45". The  minimum speed for  the wing is 
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Thus,  for  a given wing, there is a  minimum  possible  flight  speed  determined  by wh. 
If a  lower  speed  is  required, it can  only  be  obtained by increasing the wing  span to  ‘de- 
crease  wh. Equations  (Al),  (A2),  and  (A9)  show  that  the  minimum speed  is  directly 
proportional to  l /b.  Because the  resultant  force is normal to  the wake, F X / F ~  = 0 
for  the above condition;  however, L/D, which is referenced to  the  flightpath, is 1.0. 

For a wing, the vertical-force  coefficient may  be  rewritten as 

Substitute  equations (Al )  and  (A2)  into  equation  (AlO),  and  note  that  A = b /S, to 
yield 

2 

cz - - nA 

Equation (A1 1)  shows  that  the  maximum  vertical-force  coefficient can be  obtained  at 
the  minimum value  of (VG/wh)2;  thus,  substitute  equation  (A9)  into  equation (A1 1)  to 
yield 

The  lift  coefficient is obtained by substituting  equation ( IO)  into  equation (52); thus, 

Now, substitute  equation  (A3)  into  equation  (A13)  to  obtain 
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Then,  substitute  equation  (A1  1)  into  equation  (A14) to yield 

CL = .rrA sin (x  - y) cos (x  - y) 2 

Thus, CL is a  function of x - y only.  It will be observed that x 
wake  skew angle measured  from a normal to the glide slope.  The  maximum 
is found,  by  differentiation, to  occur  at 

sin x = sin (x  - y) = G 

XG = X - y z 54.736" 

Now substitute  equations  (A16)  into  equation  (A15)  to  obtain 

= .rrA ?j& z 1.2092A 
2 1  

'L,max 

- y = xG, the 
lift  coefficient 

The  forward speed at  which  this  maximum  lift  coefficient is obtained is found  by 
solving equations  (A16)  for sin x to  obtain 

sin x =$$ cos y - sin y 

and  then  substituting  equations  (A16)  and  (A18)  into  equation  (A6)  to yield 

which is identical t o  equation  (57);  thus, as before,  the  minimum  speed  in level flight is 

'G,min X -1.61 19wh 

with L/D = h, and  the  minimum  speed in descending flight is 
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4 
VG,min = - fi Wh % 1.4565wh 

with 7 = cos- l f i  35.264’. 

If the  aspect  ratio  of  a  rotor (4/77) is substituted  for A in  the  equations of this 
appendix,  the  maximum  lifts  and  minimum  speeds  of  the  main  text  are  reproduced  exactly. 
Thus,  the  theoretical  ideal  performance of the  autorotating  rotor is identical to that of a 
wing  of equal  aspect  ratio.  Differences  exist  in  actual  practice  since  the angles of attack 
required to obtain  the  maximum  performance  undoubtedly  completely stall the wing, whereas, 
on  the  rotor,  stall is confined to certain local blade  elements. 

Equation  (A17) is of particular  interest  since  it  indicates  a  maximum  lift  coefficient 
which  depends  only  on  aspect  ratio.  The  identical  result was obtained  earlier  in  reference 
16.  Other  investigators  (for  example, refs. 17 to  19) have obtained  different  results; how- 
ever, those  results were attained  by assuming the  force  vector l? to be  normal to the 
final wake  which  may  be  rolled  up.  Such  assumptions do  not  meet  the  requirements of 
zero  “shaft”  power at  the wing  (eq. (A3))  and, as observed  earlier,  would require an im- 
permissible power  input or output  directly  through  the wing. 

Even with  extreme  attempts  at  boundary-layer  control,  the  flow generally separates 
from  a wing prior to  the  attainment of lift  coefficients as great  as  those given by  equation 
(A17).  The  most  appropriate  data  are  often  assumed to be  those  of  reference 20, where 
the  lift  coefficients were obtained  by  subtracting  the  direct  thrust  contributions  from  the 
data  obtained  during  wind-tunnel  tests  of  a series of  jet-flapped wings  (ref. 19). Figure  17 
compares  those  data  with  equation  (A17)  on  the  assumption  that CL is the  “circulation” 
lift  coefficient.  The  theoretical  result is shown to  be  a good  approximation to the mea- 
sured  data. 

Even the  differences  between  theory and experiment in figure  17  may  result  from  the 
fact  that  the  tests  predated  the  development of modern  wall-interference  theories  (such as 
ref. 21) which  are appropriate  to  such large wake deflections.  The  presence of a wall- 
induced  upwash is equivalent to  a glide-slope angle. Since the  wind-tunnel  forces are 
measured  on  a  balance alined with  the  tunnel,  or  apparent,  flow  direction,  the  test  data, 
to  the  extent  that  they  are  uncorrected,  are  the  equivalent  of Cz rather  than CL. A 
comparison  of  equation (A12) to  equation  (A17)  shows clearly that  CZYmax  may be 
greater  than ‘L,max in  the  presence of a glide slope. 
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Figure 1.- Force and flow vectors at the  rotor. 
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Figure 2.- Flow states of a rotor  in  vertical  descent. 
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Figure 3.- Flow  patterns in vertical  descent with  the  descent  rate increasing from 
(a) to (f). Hovering is shown in (a);  the windmill-brake state in (f). 
(Photographs  are  from  ref. 10.) 
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Figure 4.- Comparison of  the  theoretical induced-velocity ratio  with  the  experlmental 
data  of references 4 and 5 (y = 90"; 8 = 0"). 
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Figure 5.- Comparison of the  theoretical  shaft-power ratio with the experimental  data 
of references 4 and 5 (7 = 90"; 8 = 0"). 
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(a) y = 0"; level flight. 

Figure 6.- Shaft power as a  function of glide-slope velocity at  constant tip-path-plane 
inclination  'for  different glide slopes. 
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Figure 6.- Continued. 
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Figure 6.- Continued. 
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Figure 6.- Continued. 
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Figure 6.- Continued. 
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Figure 6.- Continued. 
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(g) y = 90"; vertical  flight. 

Figure 6.- Concluded. 
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(a) e = -20". 

Figure 7.- Shaft  power as a  function of  glide-slope velocity on  constant glide slopes 
for  different tip-path-plane inclinations. 
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Figure 7.- Continued. 
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Figure 7.- Continued. 
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(d) 8 = -5". 

Figure 7.- Continued. 
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Figure '7.- Continued. 
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Figure 7.- Continued. 
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Figure 7.- Continued. 
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(h) 0 = 15". 

Figure 7.- Continued. 
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Figure 7.- Concluded. 



Figure 8.- Time  sequence  of flow patterns in steeply inclined descent. 
(Photographs  are  from ref. 10.) 
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(a)  Autogyro  mode (windmill-brake state). 

(b) Helicopter  mode  (normal  working  state). 

Figure 9.- Flow  patterns in forward flight. (Photographs  are  from ref. 10.) 
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(a) 7 = 70". 
Figure 10.- Comparison  of  theoretical  induced-velocity  ratios  with  data 

(e  = 00). 
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Figure 10.- Continued. 
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(c) 7 = 20". 

Figure 10.- Concluded. 
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Figure 11.- Comparison of theoretical  power  ratios  with data band of reference 4 (0  = 0"). 
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Figure 12.- Required  shaft  power as a function of glide-slope angle y. 
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Figure 13.- Effect of change  in  tip-path-plane  inclination on shaft  power  required  for 
flight  along glide slope. 
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Figure 14.- Vector diagram for  determining  lift  from  vertical  force. 
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Figure 16.-  Comparison of simple momentum  theory  with flight measurements of descent 
boundaries.  The Ps@h is assumed to be -0.5 in theoretical calculations. 
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Figure 17.- Comparison of  theoretical  maximum lift  coefficient to  circulation-lift  coefficient 
measured for  jet-flap wings of reference 20. The wings were at 0" angle of attack  with 
a jet  deflection angle of 85". 
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